Coatings, Vol. 16, Pages 198: Urushiol-Based Antimicrobial Coatings for Lacquer Art Applications: A Review of Mechanisms, Durability, and Safety
Coatings doi: 10.3390/coatings16020198
Authors:
Kai Yao
Jie Tian
Peirong Huang
This paper provides a systematic review of urushiol-based antibacterial coatings for lacquer art applications, focusing on three key dimensions: molecular mechanisms, durability, and safety. Natural lacquer films form a dense three-dimensional network through laccase-catalyzed oxidative cross-linking, endowing them with excellent mechanical properties and corrosion resistance, while the catechol structure in urushiol confers broad-spectrum antibacterial potential. The article elaborates on the synergistic antibacterial mechanisms of urushiol, including covalent reactions with bacterial proteins via quinone intermediates, induction of oxidative stress, and metal ion chelation. It also reveals the dynamic change pattern of coating antibacterial activity over time, characterized by “high initial efficiency- gradual mid-term decline—long-term stabilization,” a process influenced collectively by side-chain unsaturation, degree of curing, and environmental factors such as temperature, humidity, and light exposure. From an application perspective, this review examines modification approaches such as silver/titanium dioxide composite systems, structurally regulated sustained-release strategies, and anti-adhesion surface designs, while pointing out current limitations in artistic compatibility, long-term durability, and safety assessment. Particularly in scenarios involving food contact and cultural heritage preservation, migration risks from unreacted urushiol monomers and metal nanoparticles, as well as the inherent sensitization potential of urushiol, remain critical challenges for safe application. Accordingly, this paper proposes the establishment of a holistic research framework covering “material design–process control–performance evaluation” and advocates for the development of functional coating systems with low migration, high biocompatibility, and preserved aesthetic value. Such advances are essential to promote the sustainable development and safe application of urushiol-based antibacterial coatings in fields such as cultural heritage conservation, daily-use utensils, and high-end decorative arts.
Source link
Kai Yao www.mdpi.com



