Coatings, Vol. 16, Pages 32: Synergistic Effects of Graphene and SiO2 Nanoadditives on Dirt Pickup Resistance, Hydrophobicity, and Mechanical Properties of Architectural Coatings: A Systematic Review and Meta-Analysis
Coatings doi: 10.3390/coatings16010032
Authors:
Kseniia Burkovskaia
Michał Strankowski
Krzysztof Szafran
This article provides a comprehensive review of the literature on the use of graphene-based nanomaterials (graphene oxide, reduced graphene oxide, and graphene nanoplatelets) and nanosilica (SiO2) in architectural paint and coatings. The aim was to quantitatively assess their effect on dirt pickup resistance, hydrophobicity, and mechanical properties. In a systematic search across ScienceDirect, Scopus, and Web of Science (2010–2025), 20 studies that met the set inclusion criteria were identified. We extracted and generalized data with random-effects models (REML) based on standardized mean differences, conducting subgroup and meta-regression analyses to assess filler type, loading, and binder system impact. The results reveal that graphene-based fillers and SiO2 improve coating performance at the same time, and hybrid graphene-SiO2 systems may provide a synergistic improvement depending on the binder matrix. Our results present the first quantitative evidence of graphene-SiO2 interaction in the coating formulations, identify remaining research gaps, and indicate methods for designing next-generation facade paints with better dirt repellence, durability, and sustainability.
Source link
Kseniia Burkovskaia www.mdpi.com
