Computers, Vol. 15, Pages 93: A Hybrid HOG-LBP-CNN Model with Self-Attention for Multiclass Lung Disease Diagnosis from CT Scan Images
Computers doi: 10.3390/computers15020093
Authors:
Aram Hewa
Jafar Razmara
Jaber Karimpour
Resource-limited settings continue to face challenges in the identification of COVID-19, bacterial pneumonia, viral pneumonia, and normal lung conditions because of the overlap of CT appearance and inter-observer variability. We justify a hybrid architecture of deep learning which combines hand-designed descriptors (Histogram of Oriented Gradients, Local Binary Patterns) and a 20-layer Convolutional Neural Network with dual self-attention. Handcrafted features were then trained with Support Vector Machines, and ensemble averaging was used to integrate the results with the CNN. The confidence level of 0.7 was used to mark suspicious cases to be reviewed manually. On a balanced dataset of 14,000 chest CT scans (3500 per class), the model was trained and cross-validated five-fold on a patient-wise basis. It had 97.43% test accuracy and a macro F1-score of 0.97, which was statistically significant compared to standalone CNN (92.0%), ResNet-50 (90.0%), multiscale CNN (94.5%), and ensemble CNN (96.0%). A further 2–3% enhancement was added by the self-attention module that targets the diagnostically salient lung regions. The predictions that were below the confidence limit amounted to only 5 percent, which indicated reliability and clinical usefulness. The framework provides an interpretable and scalable method of diagnosing multiclass lung disease, especially applicable to be deployed in healthcare settings with limited resources. The further development of the work will involve the multi-center validation, optimization of the model, and greater interpretability to be used in the real world.
Source link
Aram Hewa www.mdpi.com

