Construction Materials, Vol. 5, Pages 70: Towards Sustainable Concrete: Current Trends and Future Projections of Supplementary Cementitious Materials in South Africa


Construction Materials, Vol. 5, Pages 70: Towards Sustainable Concrete: Current Trends and Future Projections of Supplementary Cementitious Materials in South Africa

Construction Materials doi: 10.3390/constrmater5030070

Authors:
Ichebadu George Amadi
Jeffrey Mahachi

Supplementary cementitious materials (SCMs) provide a practical solution for reducing greenhouse gas emissions associated with Portland cement production while enhancing the economy, performance, and service life of concrete and mortar. Currently, there is a significant disparity in the availability, supply, and utilisation levels of SCMs worldwide, particularly in South Africa. This paper presents an in-depth analysis of the characteristics and performance of various SCMs, including local availability, factors driving demand, production, and utilisation. The findings indicate that fly ash and limestone calcined clay are the most widely available SCM resources in South Africa, with deposits exceeding 1 billion tonnes each. Fly ash stockpiles continuously increase due to the reliance on coal-fired power plants for 85% of generated electricity and a low fly ash utilisation rate of 7%, significantly below international utilisation levels of 10–98%. Conversely, slag resources are depleting due to the steady decline of local steel production caused by energy and input costs, alongside the growing importation of steel products. Combined, the estimated production of slag and silica fume is about 1.4 million tonnes per annum, leading to their limited availability and utilisation in niche applications such as high-performance concrete and marine environments. Furthermore, 216,450 tonnes of SCM could potentially be processed annually from agricultural waste. In addition to quality, logistics, costs, and other challenges, this quantity can only replace 1.5% of clinker in South Africa, raising concerns about the viability of SCMs from agricultural waste. Based on its findings, this study recommends future research areas to enhance the performance, future availability, and sustainability of SCMs.



Source link

Ichebadu George Amadi www.mdpi.com