Cryo, Vol. 1, Pages 5: Liquid Hydrogen Application for Aero-Engine More-Electrical System: Current Status, Challenges and Future Prospects
Authors:
Zhaoyang Zheng
Jiaqi Ma
Jiaxin Hou
Ziqiao Gong
Junlong Xie
Jianye Chen
The integration of more-electric technologies into aero-engines has revolutionized their multi-power architectures, substantially improving system maintainability and operational reliability. This advancement has established more-electric systems as a cornerstone of modern aerospace electrification research. Concurrently, liquid hydrogen (LH2) emerges as a transformative solution for next-generation power generation systems, particularly in enabling the transition from 100 kW to megawatt-class propulsion systems. Beyond its superior energy density, LH2 demonstrates dual functionality in thermal management: it serves as both an efficient coolant for power electronics (e.g., controllers) and a cryogenic source for superconducting motor applications. This study systematically investigates the electrification pathway for LH2-fueled aero-engine multi-electric systems. First, we delineate the technical framework, elucidating its architectural characteristics and associated challenges. Subsequently, we conduct a comprehensive analysis of three critical subsystems including LH2 storage and delivery systems, cryogenic cooling systems for superconducting motors, and Thermal management systems for high-power electronics. Finally, we synthesize current research progress and propose strategic directions to accelerate the development of LH2-powered more-electric aero-engines, addressing both technical bottlenecks and future implementation scenarios.
Source link
Zhaoyang Zheng www.mdpi.com