Diagnostics, Vol. 15, Pages 2170: Enhanced Breast Cancer Diagnosis Using Multimodal Feature Fusion with Radiomics and Transfer Learning
Diagnostics doi: 10.3390/diagnostics15172170
Authors:
Nazmul Ahasan Maruf
Abdullah Basuhail
Muhammad Umair Ramzan
Background: Breast cancer remains a critical public health problem worldwide and is a leading cause of cancer-related mortality. Optimizing clinical outcomes is contingent upon the early and precise detection of malignancies. Advances in medical imaging and artificial intelligence (AI), particularly in the fields of radiomics and deep learning (DL), have contributed to improvements in early detection methodologies. Nonetheless, persistent challenges, including limited data availability, model overfitting, and restricted generalization, continue to hinder performance. Methods: This study aims to overcome existing challenges by improving model accuracy and robustness through enhanced data augmentation and the integration of radiomics and deep learning features from the CBIS-DDSM dataset. To mitigate overfitting and improve model generalization, data augmentation techniques were applied. The PyRadiomics library was used to extract radiomics features, while transfer learning models were employed to derive deep learning features from the augmented training dataset. For radiomics feature selection, we compared multiple supervised feature selection methods, including RFE with random forest and logistic regression, ANOVA F-test, LASSO, and mutual information. Embedded methods with XGBoost, LightGBM, and CatBoost for GPUs were also explored. Finally, we integrated radiomics and deep features to build a unified multimodal feature space for improved classification performance. Based on this integrated set of radiomics and deep learning features, 13 pre-trained transfer learning models were trained and evaluated, including various versions of ResNet (50, 50V2, 101, 101V2, 152, 152V2), DenseNet (121, 169, 201), InceptionV3, MobileNet, and VGG (16, 19). Results: Among the evaluated models, ResNet152 achieved the highest classification accuracy of 97%, demonstrating the potential of this approach to enhance diagnostic precision. Other models, including VGG19, ResNet101V2, and ResNet101, achieved 96% accuracy, emphasizing the importance of the selected feature set in achieving robust detection. Conclusions: Future research could build on this work by incorporating Vision Transformer (ViT) architectures and leveraging multimodal data (e.g., clinical data, genomic information, and patient history). This could improve predictive performance and make the model more robust and adaptable to diverse data types. Ultimately, this approach has the potential to transform breast cancer detection, making it more accurate and interpretable.
Source link
Nazmul Ahasan Maruf www.mdpi.com