Diagnostics, Vol. 15, Pages 2997: ConvNeXt-Driven Detection of Alzheimer’s Disease: A Benchmark Study on Expert-Annotated AlzaSet MRI Dataset Across Anatomical Planes
Diagnostics doi: 10.3390/diagnostics15232997
Authors:
Mahdiyeh Basereh
Matthew Alexander Abikenari
Sina Sadeghzadeh
Trae Dunn
René Freichel
Prabha Siddarth
Dara Ghahremani
Helen Lavretsky
Vivek P. Buch
Background: Alzheimer’s disease (AD) is a leading worldwide cause of cognitive impairment, necessitating accurate, inexpensive diagnostic tools to enable early recognition. Methods: In this study, we present a robust deep learning approach for AD classification based on structural MRI scans, ConvNeXt, an emergent convolutional architecture inspired by vision transformers. We introduce AlzaSet, a clinically curated T1-weighted MRI dataset of 79 subjects (63 with Alzheimer’s disease [AD], 16 cognitively normal controls [NC]) acquired on a 1.5 T Siemens Aera in axial, coronal, and sagittal planes, respectively (12,947 slices in total). Images are neuroradiologist-labeled. Results are reported per plane, with awareness of the class imbalance at the subject level. We further present AlzaSet, a novel, expertly labeled clinical dataset with axial, coronal, and sagittal perspectives from AD and cognitively normal control subjects. Three ConvNeXt sizes (Tiny, Small, Base) were compared and benchmarked against existing state-of-the-art CNN models (VGG16, VGG19, InceptionV3, DenseNet121). Results: ConvNeXt-Base consistently outperformed the other models on coronal slices with an accuracy of 98.37% and an AUC of 0.992. Coronal views were determined to be most diagnostically informative, with emphasis on visualization of the medial temporal lobe. Moreover, comparison with recent ensemble-based techniques showed superior performance with comparable computational efficiency. Conclusions: These results indicate that ConvNeXt-capable models applied to clinically curated datasets have strong potential to provide scalable, real-time AD screening in diverse settings, including both high-resource and resource-constrained settings.
Source link
Mahdiyeh Basereh www.mdpi.com
