DNA, Vol. 5, Pages 40: Loss of LsSOC1 Function Delays Bolting and Reprograms Transcriptional and Metabolic Responses in Lettuce


DNA, Vol. 5, Pages 40: Loss of LsSOC1 Function Delays Bolting and Reprograms Transcriptional and Metabolic Responses in Lettuce

DNA doi: 10.3390/dna5030040

Authors:
Jin-Young Kim
Young-Hee Jang
Tae-Sung Kim
Yu-Jin Jung
Kwon-Kyoo Kang

Background/Objectives: Bolting in lettuce (Lactuca sativa L.) is highly sensitive to elevated temperatures, leading to premature flowering and reduced crop quality and yield. Although SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is a well-known floral integrator in Arabidopsis, its role in heat-induced bolting in lettuce remains unclear. Methods: In this study, we generated CRISPR/Cas9-mediated LsSOC1 knockout (KO) lines and evaluated their phenotypes under high-temperature conditions. Results: LsSOC1-KO lines exhibited delayed bolting up to 18.6 days, and stem elongation was reduced by approximately 3.8 cm, which is equivalent to a 36.1% decrease compared to wild-type (WT) plants. Transcriptome analysis of leaf and bud tissues identified 32 up-regulated and 10 down-regulated genes common to leaf tissue (|log2FC| ≥ 1, adjusted p < 0.05). Among them, GA20-oxidase1 was significantly down-regulated in both tissues, which may have contributed to delayed floral transition and possibly to reduced stem elongation, although tissue-specific regulation of gibberellin metabolism warrants further investigation. In contrast, genes encoding heat shock proteins, ROS-detoxification enzymes, and flavonoid biosynthetic enzymes were up-regulated, suggesting a dual role of LsSOC1 in modulating thermotolerance and floral transition. qRT-PCR validated the sustained suppression of flowering-related genes in LsSOC1 KO plants under 37 °C heat stress. Conclusions: These findings demonstrate that LsSOC1 is a key integrator of developmental and thermal cues, orchestrating both bolting and stress-responsive transcriptional programs. Importantly, delayed bolting may extend the harvest window and improve postharvest quality in lettuce, highlighting LsSOC1 as a promising genetic target for breeding heat-resilient leafy vegetables.



Source link

Jin-Young Kim www.mdpi.com