Electronics, Vol. 14, Pages 2725: Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things


Electronics, Vol. 14, Pages 2725: Domain Knowledge-Driven Method for Threat Source Detection and Localization in the Power Internet of Things

Electronics doi: 10.3390/electronics14132725

Authors:
Zhimin Gu
Jing Guo
Jiangtao Xu
Yunxiao Sun
Wei Liang

Although the Power Internet of Things (PIoT) significantly improves operational efficiency by enabling real-time monitoring, intelligent control, and predictive maintenance across the grid, its inherently open and deeply interconnected cyber-physical architecture concurrently introduces increasingly complex and severe security threats. Existing IoT security solutions are not fully adapted to the specific requirements of power systems, such as safety-critical reliability, protocol heterogeneity, physical/electrical context awareness, and the incorporation of domain-specific operational knowledge unique to the power sector. These limitations often lead to high false positives (flagging normal operations as malicious) and false negatives (failing to detect actual intrusions), ultimately compromising system stability and security response. To address these challenges, we propose a domain knowledge-driven threat source detection and localization method for the PIoT. The proposed method combines multi-source features—including electrical-layer measurements, network-layer metrics, and behavioral-layer logs—into a unified representation through a multi-level PIoT feature engineering framework. Building on advances in multimodal data integration and feature fusion, our framework employs a hybrid neural architecture combining the TabTransformer to model structured physical and network-layer features with BiLSTM to capture temporal dependencies in behavioral log sequences. This design enables comprehensive threat detection while supporting interpretable and fine-grained source localization. Experiments on a real-world Power Internet of Things (PIoT) dataset demonstrate that the proposed method achieves high detection accuracy and enables the actionable attribution of attack stages aligned with the MITRE Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework. The proposed approach offers a scalable and domain-adaptable foundation for security analytics in cyber-physical power systems.



Source link

Zhimin Gu www.mdpi.com