Electronics, Vol. 14, Pages 3142: Gecko-Inspired Robots for Underground Cable Inspection: Improved YOLOv8 for Automated Defect Detection
Electronics doi: 10.3390/electronics14153142
Authors:
Dehai Guan
Barmak Honarvar Shakibaei Honarvar Shakibaei Asli
To enable intelligent inspection of underground cable systems, this study presents a gecko-inspired quadruped robot that integrates multi-degree-of-freedom motion with a deep learning-based visual detection system. Inspired by the gecko’s flexible spine and leg structure, the robot exhibits strong adaptability to confined and uneven tunnel environments. The motion system is modeled using the standard Denavit–Hartenberg (D–H) method, with both forward and inverse kinematics derived analytically. A zero-impact foot trajectory is employed to achieve stable gait planning. For defect detection, the robot incorporates a binocular vision module and an enhanced YOLOv8 framework. The key improvements include a lightweight feature fusion structure (SlimNeck), a multidimensional coordinate attention (MCA) mechanism, and a refined MPDIoU loss function, which collectively improve the detection accuracy of subtle defects such as insulation aging, micro-cracks, and surface contamination. A variety of data augmentation techniques—such as brightness adjustment, Gaussian noise, and occlusion simulation—are applied to enhance robustness under complex lighting and environmental conditions. The experimental results validate the effectiveness of the proposed system in both kinematic control and vision-based defect recognition. This work demonstrates the potential of integrating bio-inspired mechanical design with intelligent visual perception to support practical, efficient cable inspection in confined underground environments.
Source link
Dehai Guan www.mdpi.com