Electronics, Vol. 14, Pages 3353: Design of a Brushless DC Motor Drive System Controller Integrating the Zebra Optimization Algorithm and Sliding Mode Theory
Electronics doi: 10.3390/electronics14173353
Authors:
Kuei-Hsiang Chao
Kuo-Hua Huang
Yu-Hong Guo
This paper presents a novel speed controller design for a brushless DC motor (BLDCM) operating under field-oriented control (FOC). The proposed speed controller is developed by integrating the zebra optimization algorithm (ZOA) with sliding mode theory (SMT). In this approach, the parameter ranges of the sliding mode dynamic trajectory control gain, exponential reaching gain, and constant speed reaching gain—three key components of the exponential reaching law-based sliding mode controller (ERLSMC)—are defined as the research space for the ZOA. The feedback speed error and its rate of change are used as features to calculate the fitness value. Subsequently, the fitness value computed by the algorithm is compared with the current best fitness value to determine the optimal position coordinates. These coordinates correspond to the optimal set of gain parameters for the sliding mode speed controller. During the operation of the BLDCM, these optimized parameters are applied to the controller in real time. This enables the system to adjust the three gain parameters dynamically under different operating conditions, thereby reducing the overshoot commonly induced by the ERLSMC. As a result, the speed response of the BLDCM drive system can more accurately and rapidly track the speed command. Therefore, the proposed control strategy is not only characterized by a small number of parameters and ease of tuning, but also does not require large datasets for training, making it highly practical and easy to implement. Finally, the proposed control strategy is simulated using Matlab/Simulink (2024b version) and applied to the BLDCM drive system for experimental testing. Its performance is compared against three types of sliding mode controllers employing different reaching laws: the constant speed reaching law, the exponential reaching law, and the exponential reaching law combined with extension theory (ET). Simulation and experimental results confirm that the proposed novel speed controller outperforms the other three sliding mode controllers based on different reaching laws, both in terms of speed command tracking and load regulation response.
Source link
Kuei-Hsiang Chao www.mdpi.com