Electronics, Vol. 14, Pages 4460: Wavelet-Guided Zero-Reference Diffusion for Unsupervised Low-Light Image Enhancement
Electronics doi: 10.3390/electronics14224460
Authors:
Yuting Peng
Xiaojun Guo
Mengxi Xu
Bing Ding
Bei Sun
Shaojing Su
Low-light image enhancement (LLIE) remains a challenging task due to the scarcity of paired training data and the complex signal-dependent noise inherent in low-light scenes. To address these issues, this paper proposes a fully unsupervised framework named Wavelet-Guided Zero-Reference Diffusion (WZD) for natural low-light image restoration. WZD leverages an ImageNet-pre-trained diffusion prior and a multi-scale representation of the Discrete Wavelet Transform (DWT) to restore natural illumination from a single dark image. Specifically, the input low-light image is first processed by a Practical Exposure Corrector (PEC) to provide an initial robust luminance baseline. It is then converted from the RGB to the YCbCr color space. The Y channels of the input image and the current diffusion estimate are decomposed into four orthogonal sub-bands—LL, LH, HL, and HH—and fused via learnable, step-wise weights while preserving structural integrity. An exposure control loss and a detail consistency loss are jointly employed to suppress over/under-exposure and preserve high-frequency details. Unlike recent approaches that rely on complex supervised training or lack physical guidance, our method integrates wavelet guidance with a zero-reference learning framework, incorporates the PEC module as a physical prior, and achieves significant improvements in detail preservation and noise suppression without requiring paired training data. Comprehensive experiments on the LOL-v1, LOL-v2, and LSRW datasets demonstrate that WZD achieves a superior or competitive performance, surpassing all referenced unsupervised methods. Ablation studies confirm the critical roles of the PEC prior, YCbCr conversion, wavelet-guided fusion, and the joint loss function. WZD also enhances the performance of downstream tasks, verifying its practical value.
Source link
Yuting Peng www.mdpi.com
