Electronics, Vol. 15, Pages 22: Determining the Origin of Multi Socket Fires Using YOLO Image Detection


Electronics, Vol. 15, Pages 22: Determining the Origin of Multi Socket Fires Using YOLO Image Detection

Electronics doi: 10.3390/electronics15010022

Authors:
Hoon-Gi Lee
Thi-Ngot Pham
Viet-Hoan Nguyen
Ki-Ryong Kwon
Jun-Ho Huh
Jae-Hun Lee
YuanYuan Liu

In the Republic of Korea, fire outbreaks caused by electrical devices are one of the most frequent accidents, causing severe damage to human lives and infrastructure. The metropolitan police, The National Institute of Scientific Investigation, and the National Fire Research Institute conduct fire root-cause inspections to determine whether these fires are external or internal infrastructure fires. However, obtaining results is a complex process. In addition, the situation has been hampered by the lack of sufficient digital forensics and relevant programs. Apart from electrical devices, multi-sockets are among the main fire instigators. In this study, we aim to verify the feasibility of utilizing YOLO-based deep-learning object detection models for fire-cause inspection systems for multi-sockets. Particularly, we have created a novel image dataset of multi-socket fire causes with 3300 images categorized into the three classes of socket, both burnt-in and burnt-out. This data was used to train various models, including YOLOv4-csp, YOLOv5n, YOLOR-csp, YOLOv6, and YOLOv7-Tiny. In addition, we have proposed an improved YOLOv5n-SE by adding a squeeze-and-excitation network (SE) into the backbone of the conventional YOLOv5 network and deploying it into a two-stage detector framework with a first stage of socket detection and a second stage of burnt-in/burnt-out classification. From the experiment, the performance of these models was evaluated, revealing that our work outperforms other models, with an accuracy of 91.3% mAP@0.5. Also, the improved YOLOv5-SE model was deployed in a web browser application.



Source link

Hoon-Gi Lee www.mdpi.com