Electronics, Vol. 15, Pages 364: Synthetic-Digital Twin Assisted Federated Graph Learning for Edge-Based Anomaly Detection in Autonomous IoT Systems
Electronics doi: 10.3390/electronics15020364
Authors:
Manuel J. C. S. Reis
Carlos Serôdio
Frederico Branco
Federated Graph Neural Networks (FedGNNs) have emerged as a promising paradigm for decentralized graph learning across distributed data silos. However, the influence of underlying communication topologies on model accuracy and efficiency remains underexplored. This study presents a topology-aware benchmarking framework for federated GNNs, systematically evaluating the impact of network structure and aggregation strategy on performance and communication overhead. The proposed framework functions as a synthetic, communication-level digital twin that emulates Federated Learning interactions and topology-dependent dynamics under controlled conditions. Four learning schemes—Centralized, Local, FedAvg, and FedAvg-Fedadam—were assessed across three representative topologies: Barabási–Albert (BA), Watts–Strogatz (WS), and Erdős–Rényi (ER). Results demonstrate that centralized training achieved the highest mean ROC-AUC (0.63), while FedAvg-Fedadam attained the best F1-score (0.038), balancing local adaptation and global convergence. Among topologies, BA and WS yielded higher average AUC values (approximately 0.57 and 0.56, respectively) than ER (approximately 0.39). Communication analysis revealed FedAvg as the most efficient strategy, requiring only approximately 3.8 × 105 bytes cumulatively. These findings highlight key trade-offs between accuracy, robustness, and communication efficiency in federated graph learning and provide empirical guidance for topology-aware optimization of distributed GNNs. While the experiments rely on representative synthetic topologies, the insights offer indicative relevance and potential applicability to Internet-of-Things (IoT), vehicular, and cyber-physical networks, where communication structure and bandwidth constraints critically influence collaborative intelligence. By modeling canonical connectivity patterns and releasing our code and data, the proposed benchmarking framework offers a reproducible basis for comparing emerging federated graph architectures under constrained communication conditions.
Source link
Manuel J. C. S. Reis www.mdpi.com

