Electronics, Vol. 15, Pages 67: A Transformer-Assisted LCC-S Wireless Charging System for Wide-Load High-Efficiency Operation
Electronics doi: 10.3390/electronics15010067
Authors:
Guozheng Zhang
Yuyu Zhu
Haoran Li
Xin Cao
Muhammad Meisam Kazmi
Wireless power transfer is gaining attention in medium-to-short-range applications such as 1–3 kW-class UAVs and AGVs due to its safety, reliability, and adaptability to complex environments. The LCC-S topology is widely adopted due to its favorable output characteristics and device voltage-stress distribution. However, under fixed coil parameters and operating frequencies, conventional LCC-S achieves high efficiency only near the optimal equivalent load. When the actual load deviates from this value—especially in heavy-load regions—resonant cavity current increases sharply, voltage gain drops significantly, and overall efficiency deteriorates. To overcome this structural limitation without increasing control complexity or adding active regulation stages, this paper proposes a transformer-assisted LCC-S wireless charging topology based on “equivalent load reconstruction.” First, a unified equivalent circuit is constructed to derive analytical expressions for voltage gain, input impedance, and efficiency under arbitrary coupling coefficients and loads for both the traditional LCC-S and the proposed topology, revealing the mechanism behind efficiency degradation under heavy loads. Building upon this foundation, a high-frequency transformer is introduced, with an efficiency-oriented collaborative design method for its turns ratio and excitation inductance. Furthermore, by integrating simplified copper and iron-loss models, the losses in the resonant cavity and the transformer are decomposed and evaluated. Results demonstrate that when transformer parameters are appropriately selected, the newly introduced transformer losses are significantly smaller than the resonant cavity losses reduced through load reconstruction. The constructed 1 kW, 85 kHz prototype demonstrates that within the 0.5–2.5 Ω load range, the proposed topology achieves efficiency exceeding 88%. Under typical heavy-load conditions, its peak efficiency surpasses that of the conventional LCC-S by approximately 20%. The theoretical analysis, simulation, and experimental results are highly consistent, verifying that the transformer-assisted LCC-S topology and its efficiency-oriented design method can effectively expand the high-efficiency operating range across a wide load spectrum without altering the control strategy. This provides a concise and feasible structural optimization solution for wireless charging systems.
Source link
Guozheng Zhang www.mdpi.com


