Electronics, Vol. 15, Pages 877: The Agency-First Framework: Operationalizing Human-Centric Interaction and Evaluation Heuristics for Generative AI


Electronics, Vol. 15, Pages 877: The Agency-First Framework: Operationalizing Human-Centric Interaction and Evaluation Heuristics for Generative AI

Electronics doi: 10.3390/electronics15040877

Authors:
Christos Troussas
Christos Papakostas
Akrivi Krouska
Cleo Sgouropoulou

Current generative AI systems primarily utilize a prompt–response interaction model that restricts user intervention during the creative process. This lack of granular control creates a significant disconnect between user intent and machine output, which we define as the “Agency Gap”. This paper introduces the Agency-First Framework (AFF), which combines cognitive engineering and co-active design approaches to formally define human-AI collaboration. This is operationalized through the development of ten Generative AI Agency (GAIA) Heuristics, a systematic method for evaluating agency-centric interactions within stochastic generative settings. By translating the theoretical layers of the AFF into measurable criteria, the GAIA heuristics provide the necessary instrument for the empirical auditing of existing systems and the guidance of agency-centric redesigns. Unlike existing assistive AI guidelines that focus on output-level usability, the AFF establishes agency as a first-class design construct, enabling mid-process intervention and the steering of the model’s latent reasoning trajectory. Validation of the AFF was conducted through a two-tiered empirical evaluation: (1) an expert heuristic audit of state-of-the-art platforms, such as ChatGPT-o1 and Midjourney v6, which achieved high inter-rater reliability, and (2) a controlled redesign study. The latter demonstrated that agency-centric interfaces significantly enhance the Sense of Agency and Intent Alignment Accuracy compared to baseline prompt-response models, even when introducing a deliberate increase in task completion time—a phenomenon we describe as “productive friction” or an intentional interaction slowdown designed to prioritize cognitive engagement and user control over raw speed. Overall, the findings suggest that the restoration of meaningful user agency requires a shift from “seamless” system efficiency towards “productive friction”, where controllability and transparency within the generative process are prioritized. The major contribution of this work is the provision of a scalable, empirically validated framework and set of heuristics that equip designers to move beyond prompt-centric interaction, establishing a methodological foundation for agency-preserving generative AI systems.



Source link

Christos Troussas www.mdpi.com