Energies, Vol. 18, Pages 3866: PV System Design in Different Climates: A BIM-Based Methodology
Energies doi: 10.3390/en18143866
Authors:
Annamaria Ciccozzi
Tullio de Rubeis
Yun Ii Go
Dario Ambrosini
One of the goals of Agenda 2030 is to increase the share of renewable energy in the global energy mix. In this context, photovoltaic systems play a key role in the transition to clean energy. According to the International Energy Agency, in 2023, solar photovoltaic alone accounted for three-quarters of renewable capacity additions worldwide. Designing a performing photovoltaic system requires careful planning that takes into account various factors, both internal and external, in order to maximize energy production and optimize costs. In addition to the technical characteristics of the system (internal factors), the positions and the shapes of external buildings and surrounding obstacles (external factors) have a significant impact on the output of photovoltaic systems. However, given the complexity of these environmental factors, they cannot be treated accurately in manual design practice. For this reason, this paper proposes a Building Information Modeling-based workflow for the design of a photovoltaic system that can guide the professional step-by-step throughout the design process, starting from the embryonic phase to the definitive, and therefore more detailed, one. The developed methodology allows for an in-depth analysis of the shading, the photovoltaic potential of the building, the performance of the photovoltaic system, and the costs for its construction in order to evaluate the appropriateness of the investment. The main aim of the paper is to create a standardized procedure applicable on a large scale for photovoltaic integration within Building Information Modeling workflows. The methodology is tested on two case studies, characterized by different architectural features and geographical positions.
Source link
Annamaria Ciccozzi www.mdpi.com