Energies, Vol. 18, Pages 5610: Deep Temperature and Heat-Flow Characteristics in Uplifted and Depressed Geothermal Areas
Energies doi: 10.3390/en18215610
Authors:
Pengfei Chi
Guoshu Huang
Liang Liu
Jian Yang
Ning Wang
Xueting Jing
Junjun Zhou
Ningbo Bai
Hui Ding
To address the high costs and inefficiencies of blind prospecting in deep geothermal exploration, this study develops a three-dimensional heat transfer model for quantitative prediction of geothermal enrichment targets. Unlike traditional qualitative or single-mechanism analyses, this research utilizes a finite element forward modeling approach based on step-faulted depressions (sedimentary basins/grabens) and uplifts (domes/uplift belts). We simulate temperature fields and heat flux distributions in multilayered systems incorporating four thermal conductivity types (A, K, H, Q). By systematically comparing the geometric heat flow convergence in depressions with the lateral diffusion in uplifts, this work reveals mirror and anti-mirror relationships between temperature fields and structural morphology at middle and deep levels, as well as local “hot spot” and “cold zone” effects. The results indicate that, in depressional structures, shallow high-temperature reservoirs (<2 km) are mainly concentrated in A- and K-types, while deeper reservoirs (>3 km) are enriched in Q- and H-types. In contrast, uplift structures are characterized by mid- to shallow-depth (<3 km) reservoirs predominantly in A- and K-types, with high temperatures at depth preferentially hosted in A- and H-types, and the highest temperatures observed in the A-type. Thermal conductivity contrasts, layer thicknesses, and structural morphology collectively control the spatial distribution of heat flux. A strong positive correlation between thermal conductivity and heat flux is observed at the central target area, significantly stronger than at the margins, whereas this relationship is notably weakened in Q-type. Crucially, low-conductivity zones display high geothermal gradients coupled with low terrestrial heat flow, disproving the axiom that “elevated geothermal gradients imply high heat flow,” thus establishing “high-gradient/low-heat-flow coupling zones” as strategic exploration targets. The model developed in this study demonstrates high simulation accuracy and computational efficiency. The findings provide a robust theoretical basis for reconstructing geothermal geological evolution and precise geothermal target localization, thereby reducing the risk of “blind heat exploration” and promoting the cost-effective and refined development of deep concealed geothermal resources.
Source link
Pengfei Chi www.mdpi.com
