Energies, Vol. 19, Pages 1043: Effect of Pyrolysis Temperature on Chemical Structure and Thermal Stability of Digestate-Based Biochar
Energies doi: 10.3390/en19041043
Authors:
Justyna Kujawska
Wojciech Cel
Barbara Charmas
Dorota Szala
Biochar obtained from digestate is a promising material in the context of digestate management. However, it is important to note that the properties of the resulting material are largely dependent on the parameters of the pyrolysis process, with temperature being a particularly significant factor. The objective of this study was to evaluate the impacts of the digestate pyrolysis temperature on the chemical structure, thermal stability, and thermal decomposition characteristics of biochar produced at temperatures of 400, 500, 600, and 800 °C in an inert nitrogen atmosphere. Material characterization was performed using a range of analytical techniques, including elemental analysis, FTIR spectroscopy, thermogravimetric analysis (TGA/DTG), and coupled TGA–FTIR analysis, in order to identify volatile products released during the heating process. The results demonstrated that elevating the pyrolysis temperature results in progressive carbonization and aromatization of the carbon structure. Concurrently, functional groups containing oxygen and hydrogen were eliminated, as evidenced by declines in the H/C and O/C atomic ratios. FTIR analysis confirmed the disappearance of aliphatic and hydroxyl bands, as well as the dominance of aromatic structures and mineral components in biochar subjected to high-temperature treatment. The TGA results demonstrated an enhancement in thermal stability with increasing pyrolysis temperature. Concurrently, the TGA–FTIR analysis revealed a substantial decline in the emission of volatile decomposition products from biochar obtained at temperatures ≥600 °C. Overall, the pyrolysis temperature of digestate determines the utilization potential of the resulting biochar; in particular, low-temperature biochar can be used as a soil amendment and methane fermentation stimulant, while high-temperature biochar can be used for contaminant immobilization in soil and long-term carbon sequestration.
Source link
Justyna Kujawska www.mdpi.com

