Entropy, Vol. 27, Pages 1086: CSCVAE-NID: A Conditionally Symmetric Two-Stage CVAE Framework with Cost-Sensitive Learning for Imbalanced Network Intrusion Detection


Entropy, Vol. 27, Pages 1086: CSCVAE-NID: A Conditionally Symmetric Two-Stage CVAE Framework with Cost-Sensitive Learning for Imbalanced Network Intrusion Detection

Entropy doi: 10.3390/e27111086

Authors:
Zhenyu Wang
Xuejun Yu

With the increasing complexity and diversity of network threats, developing high-performance Network Intrusion Detection Systems (NIDSs) has become a critical challenge. A primary obstacle in this domain is the pervasive issue of class imbalance, where the scarcity of minority attack samples and the varying costs of misclassification severely limit the effectiveness of traditional models, often leading to a difficult trade-off between high False Positive Rates (FPRs) and low Recall. To address this challenge, this paper proposes a novel, conditionally symmetric two-stage framework, termed CSCVAE-NID (Conditionally Symmetric Two-Stage CVAE for Network Intrusion Detection). The framework operates in two synergistic stages: Firstly, a Data Augmentation Conditional Variational Autoencoder (DA-CVAE) is introduced to tackle the data imbalance problem at the data level. By conditioning on attack categories, the DA-CVAE generates high-quality and diverse synthetic samples for underrepresented classes, providing a more balanced training dataset. Secondly, the core of our framework, a Cost-Sensitive Multi-Class Classification CVAE (CSMC-CVAE), is proposed. This model innovatively reframes the classification task as a probabilistic distribution matching problem and integrates a cost-sensitive learning strategy at the algorithm level. By incorporating a predefined cost matrix into its loss function, the CSMC-CVAE is compelled to prioritize the correct classification of high-cost, minority attack classes. Comprehensive experiments conducted on the public CICIDS-2017 and UNSW-NB15 datasets demonstrate the superiority of the proposed CSCVAE-NID framework. Compared to several state-of-the-art methods, our approach achieves exceptional performance in both binary and multi-class classification tasks. Notably, the DA-CVAE module is designed to be independent and extensible, allowing the effective data that it generates to support any advanced intrusion detection methodology.



Source link

Zhenyu Wang www.mdpi.com