Fibers, Vol. 14, Pages 9: Highly Porous Cellulose-Based Scaffolds for Hemostatic Devices and Smart Platform Applications: A Systematic Review
Fibers doi: 10.3390/fib14010009
Authors:
Nikita A. Shutskiy
Aleksandr R. Shevchenko
Ksenia A. Mayorova
Leonid L. Shagrov
Andrey S. Aksenov
A promising application of smart materials based on natural polymers is the potential to solve problems related to hemostasis in cases of severe bleeding caused by injury or surgery. This can be a life-threatening situation. Cellulose and its modified derivatives represent one of the most promising sources for creating effective hemostatic systems, as well as for various sensing applications related to disease detection, infection diagnosis, chronic condition monitoring, and blood analysis. The aim of this review was to identify key criteria for the efficiency of cellulose-based gels with hemostatic activity. Experimental studies aimed at evaluating new hemostatic devices were analyzed based on international sources using the PRISMA methodology. A total of 111 publications were identified. Following the identification and screening stages, 20 articles were selected for the final qualitative synthesis. The analyzed publications include experimental studies focused on the development and analysis of highly porous cellulose-based scaffolds in the form of aerogels and cryogels. The type and origin of cellulose, as well as the influence of additional components and synthesis conditions on gel formation, were investigated. Three major groups of key criteria that should be considered when developing new cellulose-based highly porous scaffolds with hemostatic functionality were identified: (I) physicochemical and mechanical properties (pore size distribution, compressive strength, and presence of functional groups); (II) in vitro tests (blood clotting index, red blood cell adhesion rate, hemolysis, cytocompatibility, and antibacterial activity); (III) in vivo hemostatic efficiency (hemostasis time and blood loss) in compliance with the 3Rs policy (replacement, reduction, refinement). The prospects for the development of highly porous cellulose-based scaffolds are not only focused on their hemostatic properties, but also on the development of smart platforms.
Source link
Nikita A. Shutskiy www.mdpi.com
