Foods, Vol. 14, Pages 3805: A Comprehensive Review on Minimally Destructive Quality and Safety Assessment of Agri-Food Products: Chemometrics-Coupled Mid-Infrared Spectroscopy
Foods doi: 10.3390/foods14223805
Authors:
Lakshmi B. Keithellakpam
Renan Danielski
Chandra B. Singh
Digvir S. Jayas
Chithra Karunakaran
Ensuring the quality and safety of agricultural and food products is crucial for protecting consumer health, meeting market expectations, and complying with regulatory requirements. Quality and safety parameters are commonly assessed using chemical and microbiological analyses, which are time-consuming, impractical, and involve the use of toxic solvents, often disrupting the material’s original structure. An alternative technique, infrared spectroscopy, including near-infrared (NIR), mid-infrared (MIR), and short-wave infrared (SWIR), has emerged as a rapid, powerful, and minimally destructive technique for evaluating the quality and safety of food and agricultural products. This review focuses on discussing MIR spectroscopy, particularly Fourier transform infrared (FTIR) techniques, with emphasis on the attenuated total reflectance (ATR) measurement mode (globar infrared light source is commonly used) and on the use of synchrotron radiation (SR) as an alternative high-brightness light source. Both approaches enable the extraction of detailed spectral data related to molecular and functional attributes concerning quality and safety, thereby facilitating the assessment of crop disorders, food chemical composition, microbial contamination (e.g., mycotoxins, bacteria), and the detection of food adulterants, among several other applications. In combination with advanced chemometric techniques, FTIR spectroscopy, whether employing ATR as a measurement mode or SR as a high-brightness light source, is a powerful analytical tool for classification based on attributes, variety, nutritional and geographical origins, with or without minimal sample preparation, no chemical use, and short analysis time. However, limitations exist regarding calibrations, validations, and accessibility. The objective of this review is to address recent technological advancements and existing constraints of FTIR conducted in ATR mode and using SR as a light source (not necessarily in combination). It defines potential pathways for the comprehensive integration of FTIR and chemometrics for real-time quality and safety monitoring systems into the global food supply chain.
Source link
Lakshmi B. Keithellakpam www.mdpi.com


