Foods, Vol. 15, Pages 152: Characterization of Volatile Profile of Different Kiwifruits (Actinidia chinensis Planch) Varieties and Regions by Headspace-Gas Chromatography-Ion Mobility Spectrometry
Foods doi: 10.3390/foods15010152
Authors:
Lijuan Du
Yanan Bi
Jialiang Xiong
Xue Mu
Dacheng Zhai
Weixiang Chen
Hongcheng Liu
Yanping Ye
The flavor and aroma of kiwifruit are largely influenced by the concentration of Volatile Organic Compounds (VOCs). To analyze the volatile profiles and identify characteristic aroma compounds, this study utilized Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) to analyze the aromatic compounds sourced from seven major production regions in China and New Zealand, covering red-, green-, and yellow-fleshed varieties. A total of 77 VOCs were identified, with esters, aldehydes, and ketones as the dominant classes. Significant regional and varietal differences were observed: red-fleshed kiwifruits from Yunnan exhibited high levels of 2-Vinyl-5-methylfuran, Ethyl formate, and 1-Penten-3-one; green-fleshed fruits from Shaanxi were rich in Limonene and Methyl hexanoate, and those from Yunnan were rich in 1-Propanol and 1-Hexanol; and yellow-fleshed fruits from Henan were characterized by Methyl salicylate and 3-Hydroxy-2-butanone. Orthogonal partial least squares discriminant analysis (OPLS-DA) successfully classified kiwifruits by origin and variety, confirming the stability and predictive power of the model (Q2Y > 0.97). This study also elucidated the key metabolic pathways—including lipid oxidation, amino acid degradation, and terpenoid metabolism—underlying the formation of these characteristic VOCs. These findings provide a theoretical foundation for the biochemical regulation of kiwifruit flavor and support the development of origin-tracing and quality-assessment tools based on VOC fingerprints.
Source link
Lijuan Du www.mdpi.com
