Forests, Vol. 16, Pages 975: Analysis of Phytolith of Bambusa vulgaris f.vittata Grown in Different Geographic Environments


Forests, Vol. 16, Pages 975: Analysis of Phytolith of Bambusa vulgaris f.vittata Grown in Different Geographic Environments

Forests doi: 10.3390/f16060975

Authors:
Mengsi Duan
Taiyang Zhao
Guomi Luo
Xiao Wang
Hui Zhan
Shuguang Wang
Kemei Gao
Changming Wang
Rui Xu

Phytoliths play a crucial role in plant growth and development. This paper analyzes the characterization of the culm sheath phytoliths of Bambusa vulgaris f.vittata across different geographic environments. The extraction of phytoliths was performed using microwave digestion, and the morphology of the phytolith was observed microscopically. The culm sheaths of Bambusa vulgaris f.vittata from GXNN, XSBN, GZGD, FJFZ, and FAFU Bambusa vulgaris f.vittata were selected for the study. The results indicated that the phytolith content and concentration were ranked as FJFZ > XSBN > GXNN > FAFU > GZHN, and the phytolith content and concentration were geographically significantly different. Saddle, Rondel, Silica stoma, and Scrobiculate (>70%) were observed in culm sheaths developed in different geographic environments, and phytolith morphology assemblages are largely homogeneous by genetic conservatism, but the proportion of each morphology varies across geographic environments. The main distribution of phytolith particle size ranges from 0 to 100 μm, with the highest peak in the 10–20 μm interval, followed by a decrease, and an elevation of up to 100–200 μm, followed by a significant reduction. The small size of the phytolith morphology was influenced by climatic factors. Specifically, the length, width, and area of XSBN increased with higher precipitation levels. Similarly, both the length and width of GDGZ also increased with increased precipitation. For FJFZ, the length increased with riding temperatures, while its width increased with higher precipitation. Additionally, the width of GXNN expanded with increasing temperatures. The present study supplemented the phytoliths analysis of the culm sheaths of Bambusa vulgaris f.vittata, which provided reference value for further research on the ability of Bambusa vulgaris f.vittata in carbon sequestration and other aspects, and contributed essential data for the robust development of the bamboo industry. Moreover, bamboo plants represent a significant natural solution to climate change, offering ecological, economic, and social benefits. This further encourages the protection of natural bamboo forests, the expansion of artificial cultivation, and the vigorous promotion of the bamboo industry and bamboo products. By maximizing their critical roles in forest carbon sequestration and climate regulation, bamboo plants provide a viable solution for global climate governance.



Source link

Mengsi Duan www.mdpi.com