Gels, Vol. 11, Pages 216: Hydrogel-Based Biomaterials: A Patent Landscape on Innovation Trends and Patterns


Gels, Vol. 11, Pages 216: Hydrogel-Based Biomaterials: A Patent Landscape on Innovation Trends and Patterns

Gels doi: 10.3390/gels11030216

Authors:
Ahmed Fatimi
Fouad Damiri
Nada El Arrach
Houria Hemdani
Adina Magdalena Musuc
Mohammed Berrada

The hydrogel patent landscape is characterized by rapid growth and diverse applications, particularly in the biomedical field. Advances in material science, chemistry, novel manufacturing techniques, and a deeper understanding of biological systems have revolutionized the development of hydrogel-based biomaterials. These innovations have led to enhanced properties and expanded applications, particularly in regenerative medicine, drug delivery, and tissue engineering, positioning hydrogels as a pivotal material in the future of biomedical engineering. In this study, an updated patent landscape for hydrogel-based biomaterials is proposed. By analyzing patent documents, classifications, jurisdictions, and applicants, an overview is provided to characterize key trends and insights. The analysis reveals that hydrogel-related patents are experiencing significant growth, with a strong focus on biomedical applications. Foundational research in hydrogel formation remains dominant, with 96,987 patent documents highlighting advancements in crosslinking techniques, polysaccharide-based materials, and biologically active hydrogels for wound care and tissue regeneration. The United States and China lead in hydrogel-related patent filings, with notable contributions from Europe and a high number of international patents under the Patent Cooperation Treaty (PCT) system, reflecting the global interest in hydrogel technologies. Moreover, emerging innovations include biodegradable hydrogels designed for tissue regeneration, wearable hydrogel-based sensors, and advanced therapeutic applications such as chemoembolization agents and vascular defect treatments. The increasing integration of bioactive elements in hydrogel systems is driving the development of multifunctional biomaterials tailored to specific medical and environmental needs. While this study focuses on patent trends, the alignment between hydrogel research and patenting activities underscores the role of patents in bridging scientific discoveries with industrial applications. Future research could explore patent citation analysis and impact assessments to gain deeper insights into the technological significance of hydrogel-related inventions. Finally, a selection of the top 10 recent active and granted patents in the field of hydrogel-based biomaterials is presented as an illustrative example of innovation in this area and to illustrate cutting-edge innovations.



Source link

Ahmed Fatimi www.mdpi.com