Gels, Vol. 11, Pages 431: Nanoemulsion Hydrogel Delivery System of Hypericum perforatum L.: In Silico Design, In Vitro Antimicrobial–Toxicological Profiling, and In Vivo Wound-Healing Evaluation


Gels, Vol. 11, Pages 431: Nanoemulsion Hydrogel Delivery System of Hypericum perforatum L.: In Silico Design, In Vitro Antimicrobial–Toxicological Profiling, and In Vivo Wound-Healing Evaluation

Gels doi: 10.3390/gels11060431

Authors:
Ahmet Arif Kurt
Bashar Ibrahim
Harun Çınar
Ayşe Nilhan Atsü
Ertuğrul Osman Bursalıoğlu
İsmail Bayır
Özlem Özmen
İsmail Aslan

Hypericum perforatum L. (H.P.), a plant renowned for its wound-healing properties, was investigated for antioxidant/antimicrobial efficacy, toxicological safety, and in vivo wound-healing effects in this research to develop and characterize novel nanoemulsion hydrogel (NG) formulations. NG were prepared via emulsion diffusion–solvent evaporation and polymer hydration using Cremophor RH40 and Ultrez 21/30. A D-optimal design optimized oil/surfactant ratios, considering particle size, PDI, and drug loading. Antioxidant activity was tested via DPPH, ABTS+, and FRAP. Toxicological assessment followed HET-CAM (ICH-endorsed) and ICCVAM guidelines. The optimized NG-2 (NE-HPM-10 + U30 0.5%) demonstrated stable and pseudoplastic flow, with a particle size of 174.8 nm, PDI of 0.274, zeta potential of −23.3 mV, and 99.83% drug loading. Release followed the Korsmeyer–Peppas model. H.P. macerates/NEs showed potent antioxidant activity (DPPH IC50: 28.4 µg/mL; FRAP: 1.8 mmol Fe2+/g). Antimicrobial effects against methicillin-resistant S. aureus (MIC: 12.5 µg/mL) and E. coli (MIC: 25 µg/mL) were significant. Stability studies showed no degradation. HET-CAM tests confirmed biocompatibility. Histopathology revealed accelerated re-epithelialization/collagen synthesis, with upregulated TGF-β1. The NG-2 formulation demonstrated robust antioxidant, antimicrobial, and wound-healing efficacy. Enhanced antibacterial activity and biocompatibility highlight its therapeutic potential. Clinical/pathological evaluations validated tissue regeneration without adverse effects, positioning H.P.-based nanoemulsions as promising for advanced wound care.



Source link

Ahmet Arif Kurt www.mdpi.com