Gels, Vol. 11, Pages 629: Orodispersible Hydrogel Film Technology for Optimized Galantamine Delivery in the Treatment of Alzheimer’s Disease


Gels, Vol. 11, Pages 629: Orodispersible Hydrogel Film Technology for Optimized Galantamine Delivery in the Treatment of Alzheimer’s Disease

Gels doi: 10.3390/gels11080629

Authors:
Dilyana Georgieva
Ivana Bogdanova
Rositsa Mihaylova
Mariela Alexandrova
Silvia Bozhilova
Darinka Christova
Bistra Kostova

Alzheimer’s disease is the most widespread neurodegenerative disease in the world. Galantamine hydrobromide (GH) is one of the drugs used to treat mild to moderate dementia of the Alzheimer type. Due to the fact that the specificity of the disease requires maximally facilitated intake, orodispersible films present such an opportunity. In the present study orodispersible films based on poly(2-ethyl-2-oxazoline) as well as partially hydrolyzed poly(2-ethyl-2-oxazoline) were prepared and studied as delivery systems for GH. Two samples of partially hydrolyzed PEtOx were synthesized—one of relatively low degree of hydrolysis and another one of relatively high degree of hydrolysis, and studied by Nuclear Magnetic Resonance (NMR). Cytotoxicity assay was performed that validated the low hydrolyzed derivative as biocompatible polymer that maintained desirable physicochemical characteristics without compromising the safety, thereby it was selected for further research. The films were prepared by the solution casting method and characterized by different methods. FTIR was used to determine the potential interactions between the galantamine molecule and the film components. Based on the Thermogravimetric Analysis (TGA) conducted, it was concluded that all films were sufficiently thermally stable, as the component decomposition stage (after initial solvent removal) began above 180 °C. The polymer films were further characterized with the determination of Shore hardness and the results showed that the films containing glycerol as a plasticizer exhibited higher hardness compared to those with PEG as a plasticizer. The disintegration time of the films was determined visually using Petri dishes and it was found that the films disintegrated within the range of 0.52 to 1.58 min, fully meeting the pharmacopoeial requirements. GH release profiles in PBS at 37 °C were obtained, and it was found that by the second minute, 80–90% of the drug were released from the different films, and the release followed an anomalous diffusion mechanism (Case II).



Source link

Dilyana Georgieva www.mdpi.com