Gels, Vol. 11, Pages 663: Photoactive Hydrogels as Materials for Biological Applications: Preparation of Thermally Stable Photoactive Films
Gels doi: 10.3390/gels11080663
Authors:
Oscar G. Marambio
Lidia Álvarez
Héctor Díaz-Chamorro
Julio Sánchez
Rudy Martin-Trasancos
Christian Erick Palavecino
Guadalupe del C. Pizarro
Hydrogel materials have become an efficient, bioactive, and multifunctional alternative with great potential for biomedical applications. In this work, photoactive films were successfully designed for optical processing, and their photoactivity was tested in photodynamic therapy (PDT), such as antimicrobial patches. The stimulus-response hydrogel films are made of a hydrophilic polymer based on vinyl monomers, specifically 2-hydroxyethyl methacrylate (HEMA) and acrylamide (AAm), in a 1:1 molar ratio, along with the photochromic agent, 3,3-dimethylindolin-6′-nitrobenzoespiropirano (BSP), and a crosslinking agent, N,N’-methylenebisacrylamide (MBA). These hydrogel films were successfully created using the photoinitiator 2-hydroxy-4′-(2-hydroxyethoxy)-2-methylpropiophenone (IRGACURE 2959), MBA, and BSP in different concentrations (0.1, 0.3, and 0.5 mol%), which were later tested in photodynamic therapy (PDT) with the photosensitizer Ru(bpy)22+ against Staphylococcus aureus. The results showed that, while free Ru(bpy)22+ needed concentrations of 4–8 µg/mL to eliminate methicillin-sensitive (MSSA) strains, only partial inactivation was achieved for methicillin-resistant (MRSA) strains. The addition of the hydrogel films with BSP improved their effectiveness, lowering the minimum inhibitory concentration (MIC) to 2 µg/mL to fully inactivate MSSA and MRSA strains. These findings demonstrate that the combined use of hydrogel films containing BSP and Ru(bpy)22+ within a hydrogel matrix not only boosts antimicrobial activity but also highlights the potential of these photoactive films as innovative photosensitive antimicrobial coatings. This synergistic effect of BSP and Ru(bpy)22+ indicates that these materials are promising candidates for next-generation antimicrobial coatings and creative photosensitive materials.
Source link
Oscar G. Marambio www.mdpi.com