Gels, Vol. 12, Pages 178: Zwitterionic Polymer Gel Fracturing Fluid with Molecular Interface Regulation for Pretreatment-Free Flowback Recycling
Gels doi: 10.3390/gels12020178
Authors:
Qingguo Wang
Cuilong Kong
Zhixuan Zhu
Guang Shi
Xuesong Lin
Shengnan Shi
Silong Gai
Jianxun Meng
High salinity and hardness in flowback fluids from tight reservoirs severely degrade the performance of conventional fracturing fluids, leading to formation damage and imposing major constraints on water recycling. An innovative in situ molecular interface regulation strategy that bypasses the need for costly pretreatment was proposed. A novel zwitterionic polymer was synthesized by grafting trimethylamine N-oxide (TMAO) onto hydrolyzed polyacrylamide. This hydrolyzed polyacrylamide grafted with trimethylamine N-oxide polymer (HPAMT) leverages zwitterionic TMAO groups to form a robust hydration layer approximately 0.25 nm thick on the polymer chains. Each TMAO group can immobilize up to 22.2 water molecules, effectively shielding the polymer from the detrimental effects of ions like Ca2+ and Na+, thereby preventing chain curling and preserving cross-linking sites. Experimental results demonstrate that HPAMT fracturing fluid prepared with untreated flowback fluids retains over 70% of its initial viscosity. The HPAMT fracturing fluid exhibits superior thermal and shear stability, maintaining more than 90% viscosity after exposure to 90 °C and the shear rate of 170 s−1 for 60 min. Furthermore, HPAMT provides excellent proppant suspension, exceeding 60 min of static settling time. The broken gel viscosity remains below 5 mPa·s, enabling the direct reuse of flowback water. This technology overcomes the critical compatibility issue between traditional polymers and challenging brine chemistry, significantly reducing freshwater consumption and operational costs, thus presenting a viable and innovative solution for enhancing the environmental sustainability of unconventional resource development.
Source link
Qingguo Wang www.mdpi.com

