Genes, Vol. 16, Pages 1427: Characterization of the Mitochondrial Genome of Cavariella salicicola: Insight into the Codon Usage Bias and Phylogenetic Implications in Aphidinae
Genes doi: 10.3390/genes16121427
Authors:
Tian-Xing Jing
Yan-Jin Zhang
Pei-Xuan Li
Qian Wang
Jin Yang
Hong-Hua Su
Shuai Zhang
Background: Cavariella salicicola (Hemiptera: Aphidinae) is a pest on Salix spp. and various Umbelliferae (Apiaceae) vegetables. However, the taxonomic status and phylogenetic relationship of the genus Cavariella within Aphidinae remain controversial due to the small body size and easily confused external morphology. Methods: The complete mitochondrial genome of C. salicicola collected from Oenanthe javanica was sequenced using the Illumina platform and compared with C. theobaldi. The codon usage bias of two Cavariella aphids was assessed through Enc plot, PR2 plot, and neutrality plot analyses. Furthermore, phylogenetic trees were constructed based on both Maximum Likelihood and Bayesian Inference analysis. Results: The C. salicicola mitochondrial genome comprises 15,720 bp and represents a typical circular DNA molecule with a high AT content of 83.8%. It contains the standard 37 genes, including 2 ribosomal RNAs (rRNAs), 13 protein-coding genes (PCGs), 22 transfer RNAs (tRNAs), and 2 long non-coding regions (control and repeat regions). Varying degrees of codon usage bias were found across different PCGs, and the bias was predominantly influenced by natural selection rather than mutational pressure. The ratio of nonsynonymous to synonymous substitutions (Ka/Ks) indicated that all PCGs in C. salicicola, as well as most other Aphidinae species, are under strong purifying selection. The phylogenetic analysis based on Maximum Likelihood and Bayesian Inference both strongly supported the monophyly of Aphidinae, Macrosiphini, and Aphidini. Crucially, the monophyletic genus Cavariella was resolved as a sister group to all other sampled species within the tribe Macrosiphini. Conclusions: This study provides new molecular data to support the sister relationship of the genus Cavariella to other Macrosiphini aphids. This study will enhance our understanding of phylogenetic relationships within the subfamily Aphidinae.
Source link
Tian-Xing Jing www.mdpi.com
