GeoHazards, Vol. 7, Pages 13: Experimental Study and THM Coupling Analysis of Slope Instability in Seasonally Frozen Ground
GeoHazards doi: 10.3390/geohazards7010013
Authors:
Xiangshen Chen
Chao Li
Feng Ding
Yongju Shao
Freeze–thaw cycles (FTCs) are a prevalent weathering process that threatens the stability of canal slopes in seasonally frozen regions. This study combines direct shear tests under multiple F-T cycles with coupled thermo-hydro-mechanical numerical modeling to investigate the failure mechanisms of slopes with different moisture contents (18%, 22%, 26%). The test results quantify a marked strength degradation, where the cohesion decreases to approximately 50% of its initial value and the internal friction angle is weakened by about 10% after 10 freeze–thaw cycles. The simulation reveals that temperature gradient-driven moisture migration is the core process, leading to a dynamic stress–strain concentration zone that propagates from the upper slope to the toe. The safety factors of the three soil specimens with different moisture contents fell below the critical threshold of 1.3. They registered values of 1.02, 0.99, and 0.78 within 44, 44, and 46 days, which subsequently induced shallow failure. The failure mechanism elucidated in this study enhances the understanding of freeze–thaw-induced slope instability in seasonally frozen regions.
Source link
Xiangshen Chen www.mdpi.com

