GeoHazards, Vol. 7, Pages 20: Integrated Protection of Levee Landward Slopes: Effects of Seamless Cement Coating and H-Type Piles on Flow Dynamics and Scour Reduction
GeoHazards doi: 10.3390/geohazards7010020
Authors:
Javedullah Hemat Sherzai
Yoshiya Igarashi
Norio Tanaka
Hokuto Kato
Takuma Takeda
Levee overtopping poses a significant risk to flood defense infrastructure by inducing severe erosion and scour, particularly along the landward slope and toe regions. This study investigates the effectiveness of an integrated protection system combining seamless cement coating with strategically placed H-type piles to mitigate scour and modify flow dynamics under prolonged overflowing. A series of physical model tests were conducted to evaluate full and partial concrete slope protection with and without pile integration. Results showed that the seamless concrete revetment significantly delayed slope failure, resisted joint-related seepage, acted as a rigid cantilever, and maintained the structural integrity despite surrounding erosion. The inclusion of emergent H-type piles at the downstream toe disrupted the overflow jet, enhanced early energy dissipation, and reduced scour dimensions. The FC + P_ES (fully coated with emergent piles) configuration exhibited the strongest performance, reducing downstream scour length by 40%, upstream extent by 66.7%, and maximum scour depth by 7.7% compared to the FC_NP (fully coated, no-piles) condition. Partial slope coverage combined with emergent piles delayed scour initiation by approximately threefold, highlighting the synergistic effect of combined surface and flow-deflected structures measures. Conversely, bed-level piles redirected jet energy beneath the surface layer, intensifying vertical scour and upstream erosion, indicating the critical importance of pile placement and elevation. The findings emphasize the importance of integrating seamless surface protection with vertical flow disrupters to effectively manage flow-induced erosion and enhance levee resilience against overtopping floods. This hybrid approach offers a practical solution for flood-prone riverine levee systems.
Source link
Javedullah Hemat Sherzai www.mdpi.com
