Hydrology, Vol. 12, Pages 253: Forecasting the Athabasca River Flow Using HEC-HMS as Hydrologic Model for Cold Weather Applications
Hydrology doi: 10.3390/hydrology12100253
Authors:
Chiara Belvederesi
Gopal Achari
Quazi K. Hassan
The Athabasca River flows through the Lower Athabasca Region (LAR) in Alberta, Canada, which is characterized by variable inter-annual weather, long winters and short summers. LAR is important for the extraction of energy resources and industrial activities that lead to environmental concerns, including river pollution and exploitation. This study attempts to forecast the Athabasca River at Fort McMurray and understand the suitability of HEC-HMS (Hydrologic Engineering Center-Hydrologic Modeling System) in cold weather regions, characterized by poorly gauged streams. Daily temperature and precipitation records (1971–2014) were employed in two calibration–validation schemes: (1) a temporally dependent partition (1971–2000 for calibration; 2001–2014 for validation) and (2) a temporally independent partition (alternating years assigned to calibration and validation). The temporally independent approach achieved superior performance, with a Nash–Sutcliffe efficiency of 0.88, outperforming previously developed regional models. HEC-HMS successfully reproduced hydrologic dynamics and peak discharge events under conditions of sparse hydroclimatic data and limited computational inputs, underscoring its robustness for operational forecasting in data-scarce, cold-climate catchments. However, long-term projections may be subject to uncertainty due to the exclusion of anticipated changes in land use and climate forcing. These results substantiate the applicability of HEC-HMS as a cost-effective and reliable tool for hydrological modeling and flow forecasting in support of water resource management, particularly in regions subject to industrial pressures and associated environmental impacts.
Source link
Chiara Belvederesi www.mdpi.com