IJMS, Vol. 26, Pages 9229: Plastid Phylogenomics of Camphora officinarum Nees: Unraveling Genetic Diversity and Geographic Differentiation in East Asian Subtropical Forests
International Journal of Molecular Sciences doi: 10.3390/ijms26189229
Authors:
Chen Hou
Yingchao Jiang
Qian Zhang
Jun Yao
Huiming Lian
Minghuai Wang
Peiwu Xie
Yiqun Chen
Yanling Cai
Camphora officinarum Nees constitutes a pivotal tree species within the evergreen broad-leaved forests of East Asia, endowed with significant economic, ornamental, and ecological importance. Nevertheless, previous research has markedly underestimated the genetic diversity of this species, thereby hindering our efforts in conserving resources and enhancing genetic breeding. The current study generated 155 chloroplast genomes from specimens of C. officinarum obtained from six provinces/regions in China. The results reveal the identification of seven distinct clades (I–VII), with Clades II, III, V, and VII exhibiting genome expansions, primarily influenced by lineage-specific elongation of inverted repeats (IRs), whereas Clades I, IV, and VI maintained conserved IR lengths. Despite the structural plasticity, the GC content remained highly conserved. Geographic patterns indicated gene flow between adjacent regions (e.g., Hunan and Hubei with identical IR lengths), but genetic isolation in Fujian. High-polymorphism regions (psba-matK, ycf1, ycf2, and ndhF) were identified as superior phylogenetic markers, enhancing intraspecies-level resolution. Simple sequence repeats (SSRs) varied significantly among clades, dominated by A/T-rich mononucleotide repeats. These repeats, along with divergent repeat types (e.g., absence of reverse repeats in Clades V/VI), serve as robust tools for resource identification and evolutionary trajectory inference. Phylogenetically, samples from Fujian formed a distinct lineage, while samples from other regions, especially Guangdong, were mixed, with this finding probably being a reflection of historical cultivation and anthropogenic translocation. This study offers a framework for the genetic breeding and investigation of the evolutionary history of C. officinarum.
Source link
Chen Hou www.mdpi.com