Inorganics, Vol. 13, Pages 194: Binder-Free Metal–Organic Framework-Derived Zn(CN)2/V2O3/Carbon Cathode Fabricated via Electrophoretic Deposition for High-Performance Zn-Ion Batteries


Inorganics, Vol. 13, Pages 194: Binder-Free Metal–Organic Framework-Derived Zn(CN)2/V2O3/Carbon Cathode Fabricated via Electrophoretic Deposition for High-Performance Zn-Ion Batteries

Inorganics doi: 10.3390/inorganics13060194

Authors:
Hyemin Lee
Byoungnam Park

In this study, a Zn(CN)2–V2O3–C composite cathode was synthesized via AC electrophoretic deposition (EPD) and evaluated for application in aqueous zinc-ion batteries (ZIBs). Here, we report for the first time a binder-free Zn(CN)2–V2O3–C composite cathode, using AC-EPD to create an ultrathin architecture optimized for probing the electrode–electrolyte interface without interference from additives or bulk effects. The composite combines Zn(CN)2 for structural support, V2O3 as the redox-active material, and carbon for improved conductivity. X-ray diffraction confirmed the presence of Zn(CN)2 and V2O3 phases, while scanning electron microscopy revealed a uniform, ultrathin film morphology. Electrochemical analysis demonstrated a hybrid charge storage mechanism with a b-value of 0.64, indicating both capacitive and diffusion-controlled contributions. The electrode delivered a high specific capacity (~250 mAh/g at 500 mA/g) with stable cycling performance. These results highlight the potential of metal–organic framework-derived composites for high-performance ZIB cathodes. The composite is especially effective when prepared via AC-EPD, which yields ultrathin, uniform films with strong adhesion and low agglomeration. This enhances energy storage performance and provides a reliable platform for focusing on interfacial charge storage, excluding the effect of binders on electrochemical performance.



Source link

Hyemin Lee www.mdpi.com