J. Imaging, Vol. 11, Pages 411: Neural Radiance Fields: Driven Exploration of Visual Communication and Spatial Interaction Design for Immersive Digital Installations


J. Imaging, Vol. 11, Pages 411: Neural Radiance Fields: Driven Exploration of Visual Communication and Spatial Interaction Design for Immersive Digital Installations

Journal of Imaging doi: 10.3390/jimaging11110411

Authors:
Wanshu Li
Yuanhui Hu

In immersive digital devices, high environmental complexity can lead to rendering delays and loss of interactive details, resulting in a fragmented experience. This paper proposes a lightweight NeRF (Neural Radiance Fields) modeling and multimodal perception fusion method. First, a sparse hash code is constructed based on Instant-NGP (Instant Neural Graphics Primitives) to accelerate scene radiance field generation. Second, parameter distillation and channel pruning are used to reduce the model’s size and reduce computational overheads. Next, multimodal data from a depth camera and an IMU (Inertial Measurement Unit) is fused, and Kalman filtering is used to improve pose tracking accuracy. Finally, the optimized NeRF model is integrated into the Unity engine, utilizing custom shaders and asynchronous rendering to achieve low-latency viewpoint responsiveness. Experiments show that the file size of this method in high-complexity scenes is only 79.5 MB ± 5.3 MB, and the first loading time is only 2.9 s ± 0.4 s, effectively reducing rendering latency. The SSIM is 0.951 ± 0.016 at 1.5 m/s, and the GME is 7.68 ± 0.15 at 1.5 m/s. It can stably restore texture details and edge sharpness under dynamic viewing angles. In scenarios that support 3–5 people interacting simultaneously, the average interaction response delay is only 16.3 ms, and the average jitter error is controlled at 0.12°, significantly improving spatial interaction performance. In conclusion, this study provides effective technical solutions for high-quality immersive interaction in complex public scenarios. Future work will explore the framework’s adaptability in larger-scale dynamic environments and further optimize the network synchronization mechanism for multi-user concurrency.



Source link

Wanshu Li www.mdpi.com