JFB, Vol. 17, Pages 83: Comparative Finite Element Evaluation of Polymeric and Metallic Bioresorbable Sinus Stents Under Quasi-Static Radial Compression
Journal of Functional Biomaterials doi: 10.3390/jfb17020083
Authors:
Wenyu Fu
Aiping Yang
Aike Qiao
To address the issues of displacement and insufficient positional stability observed in the clinical use of the PROPEL Mini stent, this study investigates the influence of different biodegradable materials on the mechanical properties of the stent under the constraint of a fixed monofilament braided closed-loop geometry. Finite element analyses are conducted using Abaqus/Explicit to quantitatively evaluate the nonlinear mapping between nominal diameter, axial length, and radial pressure throughout a loading–unloading cycle. The results reveal that while axial behavior is consistent during compression, material-specific plasticity causes irreversible geometric sets in Mg alloy and PLGA models, whereas the PCL stent achieves total elastic recovery to its initial dimensions. During unloading, the Mg alloy stent recovers to a nominal diameter of 28 mm with a reduced axial length of approximately 22 mm, whereas the PLGA stent exhibits a much smaller recovery diameter of 14 mm with an axial length of approximately 23 mm. These post-release configurations directly determine the functional expansion range of the biodegradable stents after implantation. During unloading, the Mg alloy stent provides the highest radial pressure (peak 6.8 kPa) with a functional recovery range up to 26.5 mm, ensuring superior scaffolding stability. In contrast, while PCL achieves the widest recovery (52 mm), its radial pressure is clinically negligible (the maximum value is still less than 165 Pa), and the PLGA model exhibits both insufficient support and a restricted functional recovery limit (13 mm). By using high-strength materials such as Mg alloys, the radial anchoring force of the stent can be effectively enhanced without changing the existing structure, providing a scientific basis for solving clinical displacement problems.
Source link
Wenyu Fu www.mdpi.com
