JMSE, Vol. 13, Pages 1956: A Lightweight Image-Based Decision Support Model for Marine Cylinder Lubrication Based on CNN-ViT Fusion
Journal of Marine Science and Engineering doi: 10.3390/jmse13101956
Authors:
Qiuyu Li
Guichen Zhang
Enrui Zhao
Under the context of “Energy Conservation and Emission Reduction,” low-sulfur fuel has become widely adopted in maritime operations, posing significant challenges to cylinder lubrication systems. Traditional oil injection strategies, heavily reliant on manual experience, suffer from instability and high costs. To address this, a lightweight image retrieval model for cylinder lubrication is proposed, leveraging deep learning and computer vision to support oiling decisions based on visual features. The model comprises three components: a backbone network, a feature enhancement module, and a similarity retrieval module. Specifically, EfficientNetB0 serves as the backbone for efficient feature extraction under low computational overhead. MobileViT Blocks are integrated to combine local feature perception of Convolutional Neural Networks (CNNs) with the global modeling capacity of Transformers. To further improve receptive field and multi-scale representation, Receptive Field Blocks (RFB) are introduced between the components. Additionally, the Convolutional Block Attention Module (CBAM) attention mechanism enhances focus on salient regions, improving feature discrimination. A high-quality image dataset was constructed using WINNING’s large bulk carriers under various sea conditions. The experimental results demonstrate that the EfficientNetB0 + RFB + MobileViT + CBAM model achieves excellent performance with minimal computational cost: 99.71% Precision, 99.69% Recall, and 99.70% F1-score—improvements of 11.81%, 15.36%, and 13.62%, respectively, over the baseline EfficientNetB0. With only a 0.3 GFLOP and 8.3 MB increase in model size, the approach balances accuracy and inference efficiency. The model also demonstrates good robustness and application stability in real-world ship testing, with potential for further adoption in the field of intelligent ship maintenance.
Source link
Qiuyu Li www.mdpi.com