JMSE, Vol. 13, Pages 2065: A Comparison of Methods to Quantify Nano- and/or Microplastic (NMPs) Deposition in Wild-Caught Eastern Oysters (Crassostrea virginica) Growing in a Heavily Urbanized, Subtropical Estuary (Galveston Bay, USA)
Journal of Marine Science and Engineering doi: 10.3390/jmse13112065
Authors:
Melissa Ciesielski
Marc Hanke
Laura J. Jurgens
Manoj Kamalanathan
Asif Mortuza
Michael B. Gahn
David Hala
Karl Kaiser
Antonietta Quigg
Nano- and microplastics (NMPs) in waterways reflect the impact of anthropogenic activities. This study examined spatial variations in the presence and types of NMPs in Galveston Bay (Texas, USA) surface waters and eastern oysters (Crassostrea virginica). The results reveal most MPs carried by surface waters are fibers > films > fragments. Up to 200 MPs were present in individual oysters [=1.88 (± 0.22 SE) per g wet weight]. Oyster health, based on condition index, varied spatially, but was not correlated with MP load. Based on attenuated total reflectance—Fourier-transform infrared spectroscopy, polyamide and polypropylene were frequently found in waters in the upper bay while ethylene propylene and polyethylene terephthalate were more common in the lower parts of the bay. Pyrolysis–gas chromatography–mass spectrometry revealed a very large range in concentrations of NMPs, from 28 to 10,925 µg ∑NMP/g wet weight (or 172 to 67,783 µg ∑NMP/g dry weight) in oysters. This chemical analysis revealed four main types of plastics present in oysters regardless of location: polypropylene, nylon 66, polyethylene and styrene butadiene rubber. Based on this finding, the average daily intake of NMPs estimated for adult humans is 0.85 ± 0.45 mg NMPs/Kg of body weight/day or a yearly intake of 310 ± 164 mg NMPs/Kg of body weight/year. These findings reveal higher body burdens of plastics in oysters are revealed by the chemical analysis relative to the traditional approach; this is not unexpected given the higher sensitivity and selectivity of mass spectrometry and inclusion of the nanoplastic particle range (i.e., <1 mm) in the sample preparation and analysis.
Source link
Melissa Ciesielski www.mdpi.com
