JMSE, Vol. 13, Pages 726: Studying the Impact of the Load Distribution Ratio on the Unsteady Performance of a Dual-Stage Pump-Jet Propulsor
Journal of Marine Science and Engineering doi: 10.3390/jmse13040726
Authors:
Jiansheng Zhang
Ning Liang
Jianwei Zhang
Linlin Cao
Dazhuan Wu
Wei Zhao
Hanqiao Han
This study investigated the impact of different load distribution ratios between two rotors on the unsteady performance of dual-stage pump-jet propulsors using Computational Fluid Dynamics (CFDs) and experimental methods. The Shear Stress Transport (SST) k-ω model was employed to solve turbulence problems, and the numerical simulation method used was validated. The following conclusions were drawn: Different load distribution ratios of the dual-stage rotors have no significant impact on the overall propulsion performance of the propulsor. As the load distribution ratio is aft-shifted, the axial unsteady force of the entire propulsor continuously decreases, with a reduction of up to 53.6%. This is due to the gradual reduction in the energy of the first-stage rotor, leading to a more uniform Blade-Passing Frequency Velocity Harmonic Coefficient (BPFVHC) in front of the second-stage rotor, thereby gradually reducing the unsteady force of the second-stage rotor. The experimental results also indicate that the aft-shifted load model can reduce the sound pressure level of the propulsor. Compared to the prototype propulsor, the sound pressure level at the Blade-Passing Frequency decreases by 6.67 dB, or about 78.5%, in sound energy. This study has important implications for the low-excitation design of dual-stage pump-jet propulsors.
Source link
Jiansheng Zhang www.mdpi.com