Land, Vol. 14, Pages 1962: Modeling the Short- and Long-Term Impacts of Climate Change on Wheat Production in Egypt Using Autoregressive Distributed Lag Approach


Land, Vol. 14, Pages 1962: Modeling the Short- and Long-Term Impacts of Climate Change on Wheat Production in Egypt Using Autoregressive Distributed Lag Approach

Land doi: 10.3390/land14101962

Authors:
Mohamed Alboghdady
Salwa Abbas
Mohamed Khairy Alashry
Yuncai Hu
Salah El-Hendawy

Egypt, the world’s second-largest wheat importer, has been working hard to narrow the gap between its domestic wheat production and consumption. However, these efforts have been hampered by water scarcity and the negative impact of climate change on wheat production. This study seeks to analyze the influence of climatic and technical factors on wheat production in Egypt over the long and short term. Using Egypt-specific data from 1961 to 2022 and employing the Autoregressive Distributed Lag (ARDL) model and Granger-causality, the study examines the impact of factors such as harvested area, fertilizers, technology, CO2 emissions, seasonal temperature and precipitation patterns (winter and spring) on wheat production in Egypt. The empirical results indicate that the harvested area, level of technology, and average winter temperature significantly and positively impact wheat production. Precisely, a 1% increase in these factors leads to a 1.08%, 1.49%, and 6.89% increase in wheat production, respectively. Conversely, a 1% rise in CO2 emissions, average spring temperature, and precipitation reduced wheat production by 1.76%, 0.52%, and 0.054%, respectively. The Granger causality results indicate a bidirectional causal relationship between wheat production and harvested area. Furthermore, the technology level exhibits a significant causal influence on wheat production, cultivated area, and CO2 emissions, highlighting its pivotal role in both the wheat production process and its environmental impact. In conclusion, this study is crucial for Egypt’s future food security. By identifying the key climatic and non-climatic factors that impact wheat production, policymakers can gain valuable insights to address climate change and resource limitations. Improving domestic production through technological advancements, effective resource utilization, and climate-resilient practices will ensure a sustainable food supply for Egypt’s expanding population in the face of global uncertainties.



Source link

Mohamed Alboghdady www.mdpi.com