Logistics, Vol. 9, Pages 122: Port Performance and Its Influence on Vessel Operating Costs and Emissions
Logistics doi: 10.3390/logistics9030122
Authors:
Livia Rauca
Catalin Popa
Dinu Atodiresei
Andra Teodora Nedelcu
Background: Port congestion contributes significantly to operational inefficiency and environmental impact in maritime logistics. With tightening EU regulations such as the Emissions Trading System (EU ETS) and FuelEU Maritime, understanding and mitigating the economic and environmental effects of vessel delays is increasingly critical. This study focuses on a single bulk cargo pier at Constanta Port (Romania), which has experienced substantial traffic fluctuations since 2021, and examines operational and environmental performance through a queuing-theoretic lens. Methods: The authors have applied an M/G/1/∞/FIFO/∞ queuing model to vessel traffic and service time data from 2021–2023, supplemented by Monte Carlo simulations to capture variability in maneuvering and service durations. Environmental impact was quantified in CO2 emissions using standard fuel-based emission factors, and a Cold Ironing scenario was modeled to assess potential mitigation benefits. Economic implications were estimated through operational cost modeling and conversion of CO2 emissions into equivalent EU ETS carbon costs. Results: The analysis revealed high berth utilization rates across all years, with substantial variability in waiting times and queue lengths. Congestion was associated with considerable CO2 emissions, which, when expressed in monetary terms under prevailing EU ETS prices, represent a significant financial burden. The Cold Ironing scenario demonstrated a substantial reduction in at-berth emissions and corresponding cost savings, underscoring its potential as a viable mitigation strategy. Conclusions: Results confirm that operational congestion at the studied berth imposes substantial environmental and financial burdens. The analysis supports targeted interventions such as Just-In-Time arrivals, optimized berth scheduling, and Cold Ironing adoption. Recommendations are most applicable to single-berth bulk cargo operations; future research should extend the approach to multi-berth configurations and incorporate additional operational constraints for broader generalizability.
Source link
Livia Rauca www.mdpi.com