Machines, Vol. 13, Pages 248: A Multi-Strategy Optimized Framework for Health Status Assessment of Air Compressors


Machines, Vol. 13, Pages 248: A Multi-Strategy Optimized Framework for Health Status Assessment of Air Compressors

Machines doi: 10.3390/machines13030248

Authors:
Dali Hou
Xiaoran Wang

Air compressors play a crucial role in industrial production, and accurately assessing their health status is vital for ensuring stable operation. The field of health status assessment has made significant progress; however, challenges such as dataset class imbalance, feature selection, and accuracy improvement remain and require further refinement. To address these issues, this paper proposes a novel algorithm based on multi-strategy optimization, using air compressors as the research subject. During data preprocessing, the Synthetic Minority Over-sampling Technique (SMOTE) is introduced to effectively balance class distribution. By integrating the Squeeze-and-Excitation (SE) mechanism with Convolutional Neural Networks (CNNs), key features within the dataset are extracted and emphasized, reducing the impact of irrelevant features on model efficiency. Finally, Bidirectional Long Short-Term Memory (BiLSTM) networks are employed for health status assessment and classification of the air compressor. The Ivy algorithm (IVYA) is introduced to optimize the BiLSTM’s hyperparameters to improve classification accuracy and avoid local optima. Through comparative and ablation experiments, the effectiveness of the proposed SMOTE-IVY-SE-CNN-BiLSTM model is validated, demonstrating its ability to significantly enhance the accuracy of air compressor health status assessment.



Source link

Dali Hou www.mdpi.com