Machines, Vol. 13, Pages 914: Remaining Useful Life Prediction of Electric Drive Bearings in New Energy Vehicles: Based on Degradation Assessment and Spatiotemporal Feature Fusion
Machines doi: 10.3390/machines13100914
Authors:
Fang Yang
En Dong
Zhidan Zhong
Weiqi Zhang
Yunhao Cui
Jun Ye
Accurate prediction of the RUL of electric drive bearings over the entire service life cycle for new energy vehicles optimizes maintenance strategies and reduces costs, addressing clear application needs. Full life data of electric drive bearings exhibit long time spans and abrupt degradation, complicating the modeling of time dependent relationships and degradation states; therefore, a piecewise linear degradation model is appropriate. An RUL prediction method is proposed based on degradation assessment and spatiotemporal feature fusion, which extracts strongly time correlated features from bearing vibration data, evaluates sensitive indicators, constructs weighted fused degradation features, and identifies abrupt degradation points. On this basis, a piecewise linear degradation model is constructed that uses a path graph structure to represent temporal dependencies and a temporal observation window to embed temporal features. By incorporating GAT-LSTM, RUL prediction for bearings is performed. The method is validated on the XJTU-SY dataset and on a loaded ball bearing test rig for electric vehicle drive motors, yielding comprehensive vibration measurements for life prediction. The results show that the method captures deep degradation information across the full bearing life cycle and delivers accurate, robust predictions, providing guidance for the health assessment of electric drive bearings in new energy vehicles.
Source link
Fang Yang www.mdpi.com