Machines, Vol. 13, Pages 960: Domain Generalization for Bearing Fault Diagnosis via Meta-Learning with Gradient Alignment and Data Augmentation
Machines doi: 10.3390/machines13100960
Authors:
Gang Chen
Jun Ye
Dengke Li
Lai Hu
Zixi Wang
Mengchen Zi
Chao Liang
Jiahao Zhang
Rotating machinery is a core component of modern industry, and its operational state directly affects system safety and reliability. In order to achieve intelligent fault diagnosis of bearings under complex working conditions, the health management of bearings has become an important issue. Although deep learning has shown remarkable advantages, its performance still relies on the assumption that the training and testing data share the same distribution, which often deteriorates in real applications due to variations in load and rotational speed. This study focused on the scenario of domain generalization (DG) and proposed a Meta-Learning with Gradient Alignment and Data Augmentation (MGADA) method for cross-domain bearing fault diagnosis. Within the meta-learning framework, Mixup-based data augmentation was performed on the support set in the inner loop to alleviate overfitting under small-sample conditions and enhanced task-level data diversity. In the outer loop optimization stage, an arithmetic gradient alignment constraint was introduced to ensure consistent update directions across different source domains, thereby reducing cross-domain optimization conflicts. Meanwhile, a centroid convergence constraint was incorporated to enforce samples of the same class from different domains to converge to a shared centroid in the feature space, thus enhancing intra-class compactness and semantic consistency. Cross-working-condition experiments conducted on the Case Western Reserve University (CWRU) bearing dataset demonstrate that the proposed method achieves high classification accuracy across different target domains, with an average accuracy of 98.89%. Furthermore, ablation studies confirm the necessity of each module (Mixup, gradient alignment, and centroid convergence), while t-SNE and confusion matrix visualizations further illustrate that the proposed approach effectively achieves cross-domain feature alignment and intra-class aggregation. The proposed method provides an efficient and robust solution for bearing fault diagnosis under complex working conditions and offers new insights and theoretical references for promoting domain generalization in practical industrial applications.
Source link
Gang Chen www.mdpi.com