Materials, Vol. 18, Pages 1969: Performance of 3D Network-Structured LiFePO4@Li3V2(PO4)3/Carbon Nanofibers via Coaxial Electrospinning as Self-Supporting Cathode for Lithium-Ion Batteries


Materials, Vol. 18, Pages 1969: Performance of 3D Network-Structured LiFePO4@Li3V2(PO4)3/Carbon Nanofibers via Coaxial Electrospinning as Self-Supporting Cathode for Lithium-Ion Batteries

Materials doi: 10.3390/ma18091969

Authors:
Ruixia Chu
Hongtao Zhang
Wanyou Huang
Fangyuan Qiu
Yan Wang
Zhenyu Li
Xiaoyue Jin

Lithium-ion batteries (LIBs) with high power, high capacity, and support for fast charging are increasingly favored by consumers. As a commercial electrode material for power batteries, LiFePO4 was limited from further wide application due to its low conductivity and lithium-ion diffusion rate. The development of advanced architectures integrating rational conductive networks with optimized ion transport pathways represents a critical frontier in optimizing the performance of cathode materials. In this paper, a novel self-supporting cathode material (designated as LFP@LVP-CES) was synthesized through an integrated coaxial electrospinning and controlled pyrolysis strategy. This methodology directly converts LiFePO4, Li3V2(PO4)3, and polyacrylonitrile (PAN)) into flexible, binder-free cathodes with a hierarchical structural organization. The 3D carbon nanofiber (CNF) matrix synergistically integrates LiFePO4 (Li/Fe/POx) and Li3V2(PO4)3 (Li/V/POx) nanoparticles, where CNFs act as a conductive scaffold to enhance electron transport, while the POx polyanionic frameworks stabilize Li+ diffusion pathways. Morphological characterizations (SEM and TEM) revealed a 3D cross-connected carbon nanofiber matrix (diameter: 250 ± 50 nm) uniformly embedded with active material particles. Electrochemical evaluations demonstrated that the LFP@LVP-CES cathode delivers an initial specific capacity of 165 mAh·g−1 at 0.1 C, maintaining 80 mAh·g−1 at 5 C. Notably, the material exhibited exceptional rate capability and cycling stability, demonstrating a 96% capacity recovery after high-rate cycling upon returning to 0.1 C, along with 97% capacity retention over 200 cycles at 1 C. Detailed kinetic analysis through EIS revealed significantly reduced Rct and increased Li+ diffusion. This superior electrochemical performance can be attributed to the synergistic effects between the 3D conductive network architecture and dual active materials. Compared with traditional coating processes and high-temperature calcination, the preparation of controllable electrospinning and low-temperature pyrolysis to some extent avoid the introduction of harmful substances and reduce raw material consumption and carbon emissions. This original integration strategy establishes a paradigm for designing freestanding electrode architectures through 3D structural design combined with a bimodal active material, providing critical insights for next-generation energy storage systems.



Source link

Ruixia Chu www.mdpi.com