Materials, Vol. 18, Pages 2485: Study on Winding Forming Process of Glass Fiber Composite Pressure Vessel


Materials, Vol. 18, Pages 2485: Study on Winding Forming Process of Glass Fiber Composite Pressure Vessel

Materials doi: 10.3390/ma18112485

Authors:
Run Wu
Wenlei Zeng
Fangfang Li
Haobin Tian
Xuelei Li

Composite pressure vessels offer significant advantages over traditional metal-lined designs due to their high strength-to-weight ratio, corrosion resistance, and design flexibility. This study investigates the structural design, winding process, finite element analysis, and experimental validation of a glass fiber-reinforced composite low-pressure vessel. A high-density polyethylene (HDPE) liner was designed with a nominal thickness of 1.5 mm and manufactured via blow molding. The optimal blow-up ratio was determined as 2:1, yielding a wall thickness distribution between 1.39 mm and 2.00 mm under a forming pressure of 6 bar. The filament winding process was simulated using CADWIND software (version 10.2), resulting in a three-layer winding scheme consisting of two helical layers (19.38° winding angle) and one hoop layer (89.14°). The calculated thickness of the composite winding layer was 0.375 mm, and the coverage rate reached 107%. Finite element analysis, conducted using Abaqus, revealed that stress concentrations occurred at the knuckle region connecting the dome and the cylindrical body. The vessel was predicted to fail at an internal pressure of 5.00 MPa, primarily due to fiber breakage initiated at the polar transition. Experimental hydrostatic burst tests validated the simulation, with the vessel exhibiting failure at an average pressure of 5.06 MPa, resulting in an error margin of only 1.2%. Comparative tests on vessels without adhesive sealing at the head showed early failure at 2.46 MPa, highlighting the importance of head sealing on vessel integrity. Scanning electron microscopy (SEM) analysis confirmed strong fiber–matrix adhesion and ductile fracture characteristics. The close agreement between the simulation and experimental results demonstrates the reliability of the proposed design methodology and validates the use of CADWIND and FEA in predicting the structural performance of composite pressure vessels.



Source link

Run Wu www.mdpi.com