Mathematics, Vol. 13, Pages 2290: DLPLSR: Dual Label Propagation-Driven Least Squares Regression with Feature Selection for Semi-Supervised Learning
Mathematics doi: 10.3390/math13142290
Authors:
Shuanghao Zhang
Zhengtong Yang
Zhaoyin Shi
In the real world, most data are unlabeled, which drives the development of semi-supervised learning (SSL). Among SSL methods, least squares regression (LSR) has attracted attention for its simplicity and efficiency. However, existing semi-supervised LSR approaches suffer from challenges such as the insufficient use of unlabeled data, low pseudo-label accuracy, and inefficient label propagation. To address these issues, this paper proposes dual label propagation-driven least squares regression with feature selection, named DLPLSR, which is a pseudo-label-free SSL framework. DLPLSR employs a fuzzy-graph-based clustering strategy to capture global relationships among all samples, and manifold regularization preserves local geometric consistency, so that it implements the dual label propagation mechanism for comprehensive utilization of unlabeled data. Meanwhile, a dual-feature selection mechanism is established by integrating orthogonal projection for maximizing feature information with an ℓ2,1-norm regularization for eliminating redundancy, thereby jointly enhancing the discriminative power. Benefiting from these two designs, DLPLSR boosts learning performance without pseudo-labeling. Finally, the objective function admits an efficient closed-form solution solvable via an alternating optimization strategy. Extensive experiments on multiple benchmark datasets show the superiority of DLPLSR compared to state-of-the-art LSR-based SSL methods.
Source link
Shuanghao Zhang www.mdpi.com