Mathematics, Vol. 13, Pages 2711: Industrial-AdaVAD: Adaptive Industrial Video Anomaly Detection Empowered by Edge Intelligence
Mathematics doi: 10.3390/math13172711
Authors:
Jie Xiao
Haocheng Shen
Yasan Ding
Bin Guo
The rapid advancement of Artificial Intelligence of Things (AIoT) has driven an urgent demand for intelligent video anomaly detection (VAD) to ensure industrial safety. However, traditional approaches struggle to detect unknown anomalies in complex and dynamic environments due to the scarcity of abnormal samples and limited generalization capabilities. To address these challenges, this paper presents an adaptive VAD framework powered by edge intelligence tailored for resource-constrained industrial settings. Specifically, a lightweight feature extractor is developed by integrating residual networks with channel attention mechanisms, achieving a 58% reduction in model parameters through dense connectivity and output pruning. A multidimensional evaluation strategy is introduced to dynamically select optimal models for deployment on heterogeneous edge devices. To enhance cross-scene adaptability, we propose a multilayer adversarial domain adaptation mechanism that effectively aligns feature distributions across diverse industrial environments. Extensive experiments on a real-world coal mine surveillance dataset demonstrate that the proposed framework achieves an accuracy of 86.7% with an inference latency of 23 ms per frame on edge hardware, improving both detection efficiency and transferability.
Source link
Jie Xiao www.mdpi.com