Medicina, Vol. 61, Pages 1268: The Possibilities of Multiparametric Magnetic Resonance Imaging to Reflect Functional and Structural Graft Changes 1 Year After Kidney Transplantation


Medicina, Vol. 61, Pages 1268: The Possibilities of Multiparametric Magnetic Resonance Imaging to Reflect Functional and Structural Graft Changes 1 Year After Kidney Transplantation

Medicina doi: 10.3390/medicina61071268

Authors:
Andrejus Bura
Gintare Stonciute-Balniene
Laura Velickiene
Inga Arune Bumblyte
Ruta Vaiciuniene
Antanas Jankauskas

Background and Objectives: Non-invasive imaging biomarkers for the early detection of chronic kidney allograft injury are needed to improve long-term transplant outcomes. T1 mapping by magnetic resonance imaging (MRI) has emerged as a promising method to assess renal structure and function. This study aimed to determine the potential of MRI as a diagnostic tool for evaluating graft function and structural changes in kidney grafts 1 year after transplantation. Materials and Methods: Thirty-four kidney transplant recipients were prospectively recruited, with 27 completing the follow-up at one year. Renal MRI at 3T was performed to acquire T1, T2, and apparent diffusion coefficient (ADC) maps. Clinical parameters, including estimated glomerular filtration rate (eGFR), albumin-to-creatinine ratio (ACR), protein-to-creatinine ratio (PCR), and histological IF/TA scores, were collected. MRI parameters were compared across the groups stratified by clinical and histological markers. Diagnostic accuracy was assessed using receiver operating characteristic (ROC) analysis. Results: At 1 year, T1 corticomedullary differentiation (CMD) values were significantly higher in patients with elevated ACR (≥3 mg/mmol), PCR (≥15 mg/mmol), and mild to moderate or severe IF/TA, reflecting a reduction in the corticomedullary gradient. T1 CMD demonstrated moderate-to-good diagnostic performance in detecting ACR (AUC 0.791), PCR (AUC 0.730), and IF/TA (AUC 0.839). No significant differences were observed in T2 or ADC values across these groups. T1 CMD also showed a significant positive correlation with ACR but not with eGFR, suggesting a closer association with structural rather than functional deterioration. Conclusions: T1 mapping, particularly T1 CMD, shows promise as a non-invasive imaging biomarker for detecting chronic allograft injury and monitoring renal function 1 year after kidney transplantation.



Source link

Andrejus Bura www.mdpi.com